Kummer Surfaces for the Selfproduct of the Cuspidal Rational Curve
نویسندگان
چکیده
The classical Kummer construction attaches to an abelian surface a K3 surface. As Shioda and Katsura showed, this construction breaks down for supersingular abelian surfaces in characteristic two. Replacing supersingular abelian surfaces by the selfproduct of the rational cuspidal curve, and the sign involution by suitable infinitesimal group scheme actions, I give the correct Kummer-type construction for this situation. We encounter rational double points of type D4 and D8, instead of type A1. It turns out that the resulting surfaces are supersingular K3 surfaces with Artin invariant one and two. They lie in a 1-dimensional family obtained by simultaneous resolution, which exists after purely inseparable base change.
منابع مشابه
The rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces
The purpose of this note is to prove the rationality of the moduli spaces of Coble surfaces and of nodal Enriques surfaces over the field of complex numbers. A Coble surface is a rational surface obtained by blowing up 10 nodes of a rational plane curve of degree 6, and an Enriques surface is said to be nodal if it contains a smooth rational curve. The moduli space of nodal Enriques surfaces is...
متن کاملConstructing Abelian Surfaces for Cryptography via Rosenhain Invariants
This paper presents an algorithm to construct cryptographically strong genus 2 curves and their Kummer surfaces via Rosenhain invariants and related Kummer parameters. The most common version of the complex multiplication (CM) algorithm for constructing cryptographic curves in genus 2 relies on the well-studied Igusa invariants and Mestre’s algorithm for reconstructing the curve. On the other h...
متن کاملOn the Number of the Cusps of Rational Cuspidal Plane Curves
A cuspidal curve is a curve whose singularities are all cusps, i.e. unibranched singularities. The article describes computations which lead to the following conjecture: A rational cuspidal plane curve of degree greater or equal to six has at most three cusps. The curves with precisely three cusps occur in three series. Assuming the Flenner–Zaidenberg rigidity conjecture the above conjecture is...
متن کاملSmooth Kummer Surfaces in Projective Three-space
In this note we prove the existence of smooth Kummer surfaces in projective three-space containing sixteen mutually disjoint smooth rational curves of any given degree. Introduction Let X be a smooth quartic surface in projective three-space P. As a consequence of Nikulin’s theorem [6] X is a Kummer surface if and only if it contains sixteen mutually disjoint smooth rational curves. The classic...
متن کاملRational torsion in optimal elliptic curves and the cuspidal subgroup
LetN be a square free integer, and let A be an optimal elliptic curve over Q of conductor N . We prove that if A has a rational torsion point of prime order r such that r does not divide 6N , then r divides the order of the cuspidal subgroup of J0(N).
متن کامل